6 research outputs found

    Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations

    Get PDF
    In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal derived from resting state functional magnetic resonance imaging (fMRI) reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG) and resting-state functional MRI (fMRI) in 5 patients suffering from intractable temporal lobe epilepsy (TLE). Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions) during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband) and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal). This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional connectivity measured by iEEG and BOLD signals give complementary but sometimes inconsistent information in TLE

    Enhanced EEG functional connectivity in mesial temporal lobe epilepsy.

    No full text
    International audiencePURPOSE: To analyze and compare spectral properties and interdependencies of intracerebral EEG signals recorded during interictal periods from mesial temporal lobe structures in two groups of epileptic patients defined according to the involvement of these structures in the epileptogenic zone (EZ). METHODS: Interictal EEG activity in mesial temporal lobe (MTL) structures (hippocampus, entorhinal cortex and amygdala) was obtained from intracerebral recordings performed in 21 patients with drug-resistant mesial temporal lobe epilepsy (MTLE group). This group was compared with a "control" group of patients (non-MTLE group) in whom depth-EEG recordings of MTL show that seizures did not start from the MTL. Comparison criteria were based on spectral properties and statistical coupling (nonlinear correlation coefficient h(2)) of MTL signals. RESULTS: Power spectral density analysis showed a significant decrease in the theta frequency sub-band (p=0.01) in the MTLE group. Nonlinear correlation (h(2)) values were found to be higher in the MTLE group than in the NMTLE group (p=0.0014). This effect was significant for theta, alpha, beta and gamma frequencies. Correlation values were not correlated with the frequency of interictal spikes (IS) and significant differences between groups were still measureable even when spikes were suppressed from analyzed EEG periods. DISCUSSION: This study shows that, during the interictal state, the EZ in MTLE is characterized by a decrease of oscillations in the theta sub-band and by a general increase of signal interdependencies. This last finding suggests that the EZ is characterized by network of neuronal assemblies with a reinforced functional connectivity

    Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanism

    No full text
    International audienceA better understanding of interstructure relationship sustaining drug‐resistant epileptogenic networks is crucial for surgical perspective and to better understand the consequences of epileptic processes on cognitive functions. We used resting‐state fMRI to study basal functional connectivity within temporal lobes in medial temporal lobe epilepsy (MTLE) during interictal period. Two hundred consecutive single‐shot GE‐EPI acquisitions were acquired in 37 right‐handed subjects (26 controls, eight patients presenting with left and three patients with right MTLE). For each hemisphere, normalized correlation coefficients were computed between pairs of time‐course signals extracted from five regions involved in MTLE epileptogenic networks (Brodmann area 38, amygdala, entorhinal cortex (EC), anterior hippocampus (AntHip), and posterior hippocampus (PostHip)). In controls, an asymmetry was present with a global higher connectivity in the left temporal lobe. Relative to controls, the left MTLE group showed disruption of the left EC‐AntHip link, and a trend of decreased connectivity of the left AntHip‐PostHip link. In contrast, a trend of increased connectivity of the right AntHip‐PostHip link was observed and was positively correlated to memory performance. At the individual level, seven out of the eight left MTLE patients showed decreased or disrupted functional connectivity. In this group, four patients with left TLE showed increased basal functional connectivity restricted to the right temporal lobe spared by seizures onset. A reverse pattern was observed at the individual level for patients with right TLE. This is the first demonstration of decreased basal functional connectivity within epileptogenic networks with concomitant contralateral increased connectivity possibly reflecting compensatory mechanisms

    Simultaneous Intracranial EEG-fMRI Shows Inter-Modality Correlation in Time-Resolved Connectivity Within Normal Areas but Not Within Epileptic Regions

    Get PDF
    For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link between connectivity in haemodynamic signals during the resting-state (rs) and connectivity derived from electrophysiological activity in terms of the inter-modal connectivity correlation (IMCC). We quantified IMCC in nine patients with drug-resistant epilepsy (i) within brain networks in 'healthy' non-involved cortical zones (NIZ) and (ii) within brain networks involved in generating seizures and interictal spikes (IZ1) or solely spikes (IZ2). Functional connectivity (h 2 ) estimates for 10 min of resting-state data were obtained between each pair of electrodes within each clinical zone for both icEEG and fMRI. A sliding window approach allowed us to quantify the variability over time of h 2 (vh 2) as an indicator of connectivity dynamics. We observe significant positive IMCC for h 2 and vh 2, for multiple bands in the NIZ only, with the strongest effect in the lower icEEG frequencies. Similarly, intra-modal h 2 and vh 2 were found to be differently modified as a function of different epileptic processes: compared to NIZ, [Formula: see text] was higher in IZ1, but lower in IZ2, while [Formula: see text] showed the inverse pattern. This corroborates previous observations of inter-modal connectivity discrepancies in pathological cortices, while providing the first direct invasive and simultaneous comparison in humans. We also studied time-resolved FC variability multimodally for the first time, finding that IZ1 shows both elevated internal [Formula: see text] and less rich dynamical variability, suggesting that its chronic role in epileptogenesis may be linked to greater homogeneity in self-sustaining pathological oscillatory states
    corecore